DBPapers
DOI: 10.5593/sgem2017/12/S02.080

NUMERICAL MODELLING FOR CIRCLE TUNNEL UNDER STATIC AND DYNAMIC LOADS (CASE STUDY: COMPARISON IN DIFFERENT OF ELASTIC MODULUS AND TUNNEL DIAMETERS)

J. Mohammed
Sunday 10 September 2017 by Libadmin2017

References: 17th International Multidisciplinary Scientific GeoConference SGEM 2017, www.sgem.org, SGEM2017 Conference Proceedings, ISBN 978-619-7105-99-5 / ISSN 1314-2704, 29 June - 5 July, 2017, Vol. 17, Issue 12, 627-634 pp, DOI: 10.5593/sgem2017/12/S02.080

ABSTRACT

Most of researchers explain that shallow tunnels suffer higher damage compared to deep structures. Many numerical analyses were carried out in order to verify and compare the stresses, forces and bending moments acting on tunnel lining according with the seismic design. After tunnel modelling in MIDAS GTS NX to investigate the tunnel simulation in order to highlight the effect of static and dynamic load on the behaviour of tunnel lining for different cases and calculated the value of each mesh node based on 3D finite element method to simulate the effect of earthquake on tunnel were undertaken to investigate the comparison in different tunnel diameter and different modulus of elasticity response conditions to compare the results in the displacement , maximum principle stress and minimum principle stress acting in the tunnel lining. Design response spectrum of UBC (1997) is used as seismic response spectrum. Due to the application of the static load the stress-strain state around the tunnel periphery is changed, the primary stress state is disrupted and the potential of instability increases, otherwise the result show that the applied dynamic stress is not negligible for underground structure, but it is less dangerous in comparison with the others.

Keywords: Tunnel, FEM, Static load, Dynamic load, Displacement