NEW SGEM Scientific Online eLibrary
After a long time work, our pride is the absolutely new SGEM Online eLibrary, available here. The Library is created according the rules of the International databases, with a whole needed information and ability to export the article in BIB format. Try and spread your experience with us.
Till we complete the new library with papers from all the years, you can use this link /Full Old Library/, if papers that you need are not visible yet here.

REMOVAL OF TOTAL ORGANIC CARBON AND COLOR FROM ASTANA MUNICIPAL LANDFILL LEACHATE BY UV-FENTON, UV-H2O2 AND FENTON REACTION

Poulopoulos, S. G.; Makhatova, A.; Mazhit, B.; Inglezakis, V. J.
Abstract:
In the present work, UV-Fenton, UV-H2O2 and Fenton processes were employed to treat a leachate from the municipal solid waste landfill of Astana (Kazakhstan). Each experiment lasted 120 minutes, and the treatment efficiency was assessed through total organic carbon (TOC), total nitrogen (TN) and color removal. The total volume of the treated solution was 250 mL and an annular UV (254 nm) photoreactor operated in batch recycle mode was used in the case of photochemical treatment. The landfill leachate, which currently is left untreated, had initial carbon concentration equal to 5868 mg L-1 and pH 8.16. The total carbon was by 40-45% inorganic, and nitrogen was 90% inorganic in the ammonium form. Preliminary experiments showed that inorganic carbon acting as hydroxyl radicals scavenger inhibited significantly the UV-Fenton treatment. Consequently, pretreatment process in two steps was applied: continuous air stripping for 24 hours at pH = 12 to remove ammonia and then pH adjustment to 5 to remove inorganic carbon. The pretreated leachate was further diluted with tap water in a ratio of 1/2.4 and sent for chemical/photochemical treatment. The leachate used as feed to next processes had initial carbon concentration in the range of 1100-1300 mg L-1 (all carbon was organic) and pH 5.1-5.3. The experiments were conducted using 400 ppm of Fe(II) and 6660 mg L-1 of H2O2. In the case of the UV-Fenton treatment, the results obtained showed that the presence of inorganic carbon had significant effect on total carbon (TC) removal; without the pretreatment steps only 7.7% TC removal was observed, while 29% TC (equal to TOC) removal was achieved when the inorganic carbon was removed at the pretreatment steps. The initial pH value was ranged in 2.4-5.4 and had also a considerable effect on total organic carbon and color removal. Specifically, the highest TOC removal (44.3%) was achieved when initial pH was adjusted at 3.0. Temperature dependence in the range of 25-40oC was of minor importance compared to rest operating parameters. UV-H2O2 treatment did not result in any TOC removal, which is in contrast with the results obtained for simple solutions. Using classical Fenton process instead of photo-Fenton process led to TC removal around only 20%. Finally, the use of Fe(III) instead of Fe(II) was beneficial in terms of TOC and color removal achieved.
SGEM Research areas:
Year:
2018
Type of Publication:
In Proceedings
Keywords:
landfill leachate; photo-Fenton; photochemical; AOPs; hydrogen peroxide
Volume:
18
SGEM Book title:
18th International Multidisciplinary Scientific GeoConference SGEM2018
Book number:
1.5
SGEM Series:
International Multidisciplinary Scientific GeoConference-SGEM
Pages:
417-424
Publisher address:
51 Alexander Malinov blvd, Sofia, 1712, Bulgaria
SGEM supporters:
Bulgarian Acad Sci; Acad Sci Czech Republ; Latvian Acad Sci; Polish Acad Sci; Russian Acad Sci; Serbian Acad Sci & Arts; Slovak Acad Sci; Natl Acad Sci Ukraine; Natl Acad Sci Armenia; Sci Council Japan; World Acad Sci; European Acad Sci, Arts & Letters; Ac
Period:
3 – 6 December, 2018
ISBN:
978-619-7408-72-0
ISSN:
1314-2704
Conference:
18th International Multidisciplinary Scientific GeoConference SGEM2018, 3 – 6 December, 2018
DOI:
10.5593/sgem2018V/1.5/S02.052
Hits: 92
/** LightBox **/ /** END LightBox **/ /** SweetAlert **/ /** **/ /** SweetAlert2 **/ /** END SweetAlert2 **/