M. Záleská, Z. Pavlík, A. Pivák, O. Jankovský, M. Pavlíková
Thursday 11 October 2018 by Libadmin2018


Magnesium oxychloride (MOC) cement, also called Sorel cement is a type of non-hydraulic cement, formed by mixing magnesium oxide powder with magnesium chloride solution. It was developed in 1867, shortly after the invention of Portland cement. MOC cement has many properties superior to Portland cement including lower carbon emission, lower thermal conductivity, higher fire resistance and excellent bonding ability to a wide range of fillers. For these advantages, MOC cement has been conventionally used for making floors and a variety of panels in building industry. MOC cement draws much research interest recently due to energy saving consideration, because the production of light burnt (caustic) MgO used in MOC cement requires a much lower calcination temperature in comparison with Portland cement. Due to his bonding ability, MOC cement can incorporate high amount of waste plastic based aggregate to produce environmentally friendly and energy efficient material with enhanced thermal insulation properties for a variety of building applications. In this paper, magnesium oxychloride concrete with waste expanded polypropylene (EPP) as aggregate was designed, developed and tested. EPP was used as full replacement of natural silica aggregate. MgO was first analysed in terms of its basic physical and chemical properties. Characterization of EPP was done with specific attention to thermal properties of this type of aggregate and its particles size distribution. For hardened MOC concrete, basic physical properties, mechanical resistance and thermal performance were determined for 28-days air cured samples. It was found the developed composite exhibits acceptable mechanical resistance and greatly improved thermal insulation performanceand has a good potential to be considered as material for sustainable building industry with low environmental impact compared to Portland cement-based composite materials.

Keywords: magnesium oxychloride cement, caustic magnesite, waste expanded polypropylene, mechanical properties, thermal properties

Home | Contact | Site Map | Site statistics | Visitors : 0 / 353063

Follow site activity en  Follow site activity GREEN BUILDINGS TECHNOLOGIES AND MATERIALS  Follow site activity Papers SGEM2018   ?

CrossRef Member    Indexed in ISI Web Of Knowledge   Indexed in ISI Web Of Knowledge

© Copyright 2001 International Multidisciplinary Scientific GeoConference & EXPO SGEM. All Rights Reserved.

Creative Commons License